Errata for 'Unitary Reflection Groups'

Gustav I. Lehrer and Donald E. Taylor

5 February, 2025

Page 2, line 6	The citation should be to 210 , not 209 .
Page 16, line 7	Change ' M of V ' to 'of V '.
Page 21, line 15	Change ' $\mu(A)w\Sigma = \Sigma$ ' to ' $\mu(A)W\Sigma = \Sigma$ '.
Page 23, line 11	Change 'primitive group' to 'a primitive group'.
Page 24, line -4	Change $g.h := (h_{g(1)}, h_{g(2)}, \dots, h_{g(n)})$ to
	$g.h := (h_{g^{-1}(1)}, h_{g^{-1}(2)}, \dots, h_{g^{-1}(n)}).$
Page 26, line -2	Proposition 2.10 should read: If $n > 1$, then $G(m, p, n)$ is an
	imprimitive unitary reflection group. If $m > 1$, then $G(m, p, n)$ is
	irreducible except when $(m, p, n) = (2, 2, 2)$.
<i>Page</i> 29, <i>line</i> −16	Change 'then H is conjugate to' to 'then $m\geq 4$ and H is conjugate to'.
Page 49, line -6	Change 'by g ' to 'by G '.
Page 49, line -5	Change 'hence $gP = P$ ' to 'hence $gP = P$ for all $g \in G$ '.
Page 55, lines $-1, -2$	The index i runs from 0 to k . That is, the sentence should read:
	'The k^{th} graded component of $M \otimes N$ is $\bigoplus_{i=0}^{k} M_i \otimes N_{k-i}$ and so
	the coefficient of t^k in $P_{M\otimes N}(g,t)$ is
	$\sum_{i=0}^{k} \operatorname{trace}(g, M_i) \operatorname{trace}(g, N_{k-i})$.
Page 72, lines $13 \cdots 1$	6 Change to: 'Given $T \in U_2(\mathbb{C})$, put $q := T(1)$. Then $q \in S^3$,
	$R(q)T$ fixes 1 and hence leaves its orthogonal complement $\mathbb{C}j$
	invariant. Consequently $R(q)T(j) = \alpha^2 j$ for some $\alpha \in \mathbb{C}$. In fact
	$lpha\in S^1$ because $R(q)T$ preserves the hermitian form. Thus
	$T = L(\alpha)R(q^{-1}\alpha).$
Page 84, line 13	Change 'where m is the exponent of G ' to 'for some m '.
<i>Page</i> 104, <i>line</i> −13	Include: 'and let $B_n^{(k)}$ be the line system for the group $G(k, 1, n)$ '.
Page 104, line -4	Change ' $n \ge 4$ ' to ' $n \ge 5$ '.
Page 139, line 9	Additional explanation: If V_{λ} were <i>H</i> -invariant, then V_{λ} would be a
	sum of isotypic components of the H -module V . Since H is a normal
	subgroup of G, the images of V_{λ} under the action of G would be a
	system of imprimitivity for G .
<i>Page</i> 154, <i>line</i> −8	Change ' $\ell \in S$ ' to ' $\ell \in \mathfrak{L}$ '.
Page 157, line -7	Change ' $u.v \in L$ ' to ' $u, v \in L$ '.
Page 164, line 13	Change ' $W(\mathcal{N}_4)$ ' to ' $W(\mathcal{N}_4)$ '.

Page 166, line 15	Add the sentence 'By construction, the group $G(3,3,6)$ is a subgroup of $W(\mathcal{K}_6)$ and therefore $W(\mathcal{K}_6)$ contains a central element of order 6.'
<i>Page</i> 172, <i>line</i> −7	In the summation, change ' $k = 0$ ' to ' $k = 1$ '.
Page 172, line -1	Change 'Lemma 4.14' to 'Theorem 4.14'.
Page 174, line 6	Change 'Lemma 9.8' to 'Lemma 9.7'.
<i>Page</i> 211, <i>line</i> −9	Change the display to
	$0 = P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_r \subsetneq S/\mathcal{I}(A) = \mathbb{C}[A]$
Page 236, line 16	Change 'occurrences of 1' to 'occurrences of ζ '.
<i>Page</i> 269, <i>line</i> −10	Change 'Harish-Chandra' to 'Harish-Chandra'.
Page 277, line 13	Remove ${}^{\prime}\mathcal{D}_{3}^{(3)} \perp \mathcal{A}_{2}{}^{\prime}$ from the entry for \mathcal{K}_{5} .
Page 249, line 2	In order for Corollary A.10 to hold we need to specify that R is an
	affine domain; that is, R is an integral domain which is finitely
	generated as a K -algebra, where K is a field.
Page 249, line -6	Replace 'dim N' with 'dim R'_N '.
Page 249, line -5	Replace 'dim M ' with 'dim R_M '.
Page 249, line -2	Replace ' R_0 ' with ' R' '.

Page 281, line -16 Replace '1985' with '2003'.